

Laser Engineered Net Shaping (LENS)

An NCMS CTMA Collaborative Program

Mike Gnam -NCMS

Rich Plourde -Optomec

Tom McDonald -Laser Fare

November 14, 2000

110700-0007MG0145

Background

- Laser Engineered Net Shaping Project (LENS)
- NCMS Collaborative Project
- Conducted under the CTMA Program at NCMS
- Mission to improve the repair and overhaul capabilities of DoD maintenance depots

LENS Program

The Problem

- Develop new methods and applications of repair and overhaul technologies to extend the life of aging aircraft, ship, vehicles, and weapon systems
- Conventional repair techniques such as MIG or TIG Welding induce excessive heat and a large HEAT AFFECTED ZONE (HAZ) destroying usefulness of the part

LENS Program

■ The Problem (cont.)

- High cost of scrapping or maintaining critical parts, especially, when drawings do not exist.

- Parts deemed non-repairable or scrapped during the repair process

LENS Program

The Solution

- Form a collaborative project under the CTMA program between DOD and commercial industrial partners to apply LENS technologies to specific participant applications.
- Develop the equipment and pilot the applications of this LENS technology to new shapes and new materials than previous state of the art.

CTMA LENS Phase I Project Participants

Anniston Army Depot
End User

Mfg Service Provider

Teamwork

Partnership

CPTOMEC

Eqpt Mfg/Tech Provider

Tasks

- Build two 1100W LENS units for applications at depots and industrial partners
- Address process development issues (mat'l condition, geometries, tool paths, build rates, accuracy, surface finishes, etc
- Investigate embedding sensors
- Investigate alternate material applications (e.g. aluminum)
- Industrial tooling repair applications
- Benefit analysis

- Current program is 18 months ending in June 2001
- Participants looking to form LENS II
 - Possible alternate materials
 - Possible portability
- Depot Tour underway looking at applications and creating awareness

- Further Detailed Description
 - LENS Technology
 - LENS Applications
 - Specific Real World Examples
 - Cost Benefits to DoD

LENS Technology & Applications

CPTCMEC

LENS Technology

Overview

Rich Plourde

CTMA LENS Project
Statement of Work
Tom McDonald

Traditional Rapid Prototyping Techniques

3D parts fabricated from 2D layers.

- STL File input
- Hatch & Contour filling

LENS Process for part fabrication tool path

Optomec LENS offers a multi-functional enabling technology platform, providing solutions for a wide range of applications.

LENS Process for part repair tool path

- The repair area is sketched using the mouse.
- Tool path is created.
- Operator "dials in" process parameters in computer controlled system. Collaboration that works

LENS Process Advantages

Additive 3D fabrication of embedded structures.

• Computer controlled gradient deposition of multiple materials within a single part.

• Exceptional material properties.

Material Type	Ultimate Strength (ksi)	Yield Strength (ksi)	Elongation (% in one inch)			
Optomec DMDS 316 Stainless Steel	115	72	50			
316 SS Wrought Stock	85	35	50			
Optomec DMDS Inconel 625	135	84	38			
Inconel 625 Wrought Stock	121 :	58 :	30			
Optomec DMDS Ti-6Al-4V	170	155 :	11			
Ti-6Al-4V Wrought Stock	130	120	10			

• Small Heat Affected Zone (HAZ).

Nd: YAG Laser Absorption Irradiance

Optical Absorption vs Wavelength

- Since it is undesirable to vaporize the material as it is deposited, it is the optical absorption of materials that is critical to the LENS laser free form fabrication process.
- With the exception of copper, all of the elemental metals shown in this graph have significantly higher absorption at the Nd:YAG laser wavelength as compared to the CO₂laser wavelength.

Collaboration that works

ADVANTAGE: Small Heat Affected Zone (HAZ)

BENEFIT: No part distortion or micro cracking

Anniston Army Depot

OPTOMEC

Estimated Annual Cost Savings

Inconel 625 - 15 Min

ITEM #1

Third (3rd) Stage Turbine Rotor Fourth (4th) Stage Turbine Rotor

ITEM #3 Second (2nd) Stage Nozzle

ITEM #4 Compressor Stator 1st L.P.

LASER ENGINEERED NET SHAPING (LENS) - ESTIMATED PER YEAR COST SAVINGS												
										PARTS		
			PART	NE	W PART	ESTIMATED		SAVINGS PER		REPAIRED	SAVINGS PER	
ITEM	PART	MATERIAL	NUMBER		COST	RE	PAIR COST		PART	PER YEAR		YEAR
1	Third (3rd) Stage Turbine Rotor	M3610C/Inconel 713LC	12271565	\$	8,297	\$	2,000	\$	6,297	230	\$	1,448,416
2	Fourth (4th) Stage Turbine Rotor	M3610C/Inconel 713LC	12281566	\$	5,485	\$	2,000	\$	3,485	230	\$	801,529
3	Second (2nd) Stage Nozzle	M3602/Inconel 713C	12286886	\$	6,032	\$	2,250	\$	3,782	600	\$	2,269,140
4	Compressor Stators (H.P. and L.P.)											
	1st L.P.	AMS 5510/321 Stainless	12302430	\$	910	\$	300	\$	610	175	\$	106,759
	2nd L.P.	AMS 5510/321 Stainless	12286149	\$	1,170	\$	300	\$	870	175	\$	152,264
	3rd L.P.	AMS 5510/321 Stainless	12302480	\$	610	\$	300	\$	310	175	\$	54,304
	4th L.P.	AMS 5510/321 Stainless	12286161	\$	611	\$	300	\$	311	175	\$	54,495
	5th L.P.	AMS 5510/321 Stainless	12302429	\$	701	\$	300	\$	401	175	\$	70,091
	1st H.P.	AMS 5504/410 Stainless	12286257	\$	604	\$	300	\$	304	175	\$	53,155
	2nd H.P.	AMS 5504/410 Stainless	12286261	\$	1,188	\$	300	\$	888	175	\$	155,377
	3rd H.P.	AMS 5504/410 Stainless	12286266	\$	575	\$	300	\$	275	175	\$	48,038
	4th H.P.	AMS 5504/410 Stainless	12286568	\$	1,893	\$	300	\$	1,593	175	\$	278,782
5	Fourth (4th) Stage Seal Runner	AMS 5662/Inconel 718	12286490	\$	319	\$	200	\$	119	600	\$	71,268
				\$	28,395	\$	9,150	\$	19,245		\$	5,563,617

OPTOMEC

Anniston Army Donot 3rd Stage Turbine Rotor Repair

CTMA LENS Model 842

PHASE I FEATURES

- ➤ 1100 Watts of cw Nd:YAG Laser Power
- ➤ Fiber Optic Beam Delivery
- ➤ 18"x18"x42"(z axis) build envelope
- ≥ 3 Axis of Laser & Powder delivery
- ➤ 4th & 5th Axis Tilt / Rotary Fixturing Stage
- ≥ 2 Powder Feed Units for gradient depostion
- ➤ Hermetically sealed Class I Laser Enclosure
- ➤ Controlled Atmosphere Environment with Oxygen Sensor for process control
- ➤ Filtering System for Particulate Control
- ➤ CCD Vision System
- ➤ Closed Loop Computer Controlled System
- ➤ Power requirements = 208V-3 Phase-100A
- ➤ Industrial Hardened Windows NT workstations and electronics with front panel for easy access and monitoring.

CTMA LENS Applications

LENS Project Statement of Work Tom McDonald

CTMA/LENS STATEMENT OF WORK

PROCESS DEVELOPMENT

- Part/repair preparation
 - Material condition, repair geometry & CAD file, tool path
- Part/repair build
 - Build rates, material properties, geometry accuracy
- Part/repair finishing
 - Auto/mechanical, manual, post-treatment (e.g. heat treat)
- General issues
 - Customer process qualification requirements
 - Regulatory process qualification requirements
 - Feasibility studies (cost vs.accuracy, cost vs. properties)

CTMA/LENS STATEMENT OF WORK

APPLICATIONS

- **Prototypes**
 - Functional, smart
- Repairs
 - Failures in field, fabrication scrap and rework
- Small lot production
 - Spare parts, new / development parts
- Legacy part production
 - From CAD, reverse engineering
- Improvement of properties in existing alloys and composites
- Development of new alloys and composites

CTMA/LENS STATEMENT OF WORK

APPLICATIONS

- Lowest hanging fruit (i. e. best ROI for time spent)
 - Parts scrapped and replaced with new parts
 - large HAZ (distortion, destroyed substrate microstructure)
 - excessive remachining after deposition
 - Ideal scale and geometry
 - one foot cube, thin walls, low aspect ratios
 - Ideal materials
 - Ti6V4Al, Inco 625, Inco718, 316 SS, H13
 - gradients (CTE mismatch, etc.)
 - Chronic repairs
 - more robust coatings
 - Faster

Next Steps

- Identify applications for LENS Phase I and potential LENS Phase II Projects.
 - Salvaging non-repairable parts
- Possible Phase II Projects
 - Optimize aluminum fabrication and repair
 - Configure LENS system for portable applications
 - Embedded Sensors
 - Establish process parameters for various materials
 - Gradient material optimization
 - Application specific nozzle design for line of sight deposition

THANK YOU

Mike Gnam

Phone: (734) 995-4971 Email: mikeg@ncms.org Web: www.ncms.org

Tom McDonald

Phone: (401) 738-5777

Email: tmcdonald@laserfare.com Web: www.infinite-group.com

CPTOMEC

Rich Plourde

Phone: (410) 465-9557 Email: rplourde@optomec.com Web: www.optomec.com

Contacts

- Mike Gnam-NCMS 734-995-4971 mikeg@ncms.org
- Rich Plourde-Optomec 410-465-9557 rplourde@optomec.com
- Tom McDonald-Laserfare 401-738 5777 tmcdonald@laserfare.com

